Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612475

RESUMO

MAPKKs, as one of the main members of the mitogen-activated protein kinase (MAPK) cascade pathway, are located in the middle of the cascade and are involved in many physiological processes of plant growth and development, as well as stress tolerance. Previous studies have found that StMAPKK5 is responsive to drought and salt stress. To further investigate the function and regulatory mechanism of StMAPKK5 in potato stress response, potato variety 'Atlantic' was subjected to drought and NaCl treatments, and the expression of the StMAPKK5 gene was detected by qRT-PCR. StMAPKK5 overexpression and RNA interference-mediated StMAPKK5 knockdown potato plants were constructed. The relative water content, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities, as well as proline (Pro) and malondialdehyde (MDA) contents of plant leaves, were also assayed under drought and NaCl stress. The StMAPKK5 interacting proteins were identified and validated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). The results showed that the expression of StMAPKK5 was significantly up-regulated under drought and NaCl stress conditions. The StMAPKK5 protein was localized in the nucleus, cytoplasm, and cell membrane. The expression of StMAPKK5 affected the relative water content, the enzymatic activities of SOD, CAT, and POD, and the proline and MDA contents of potatoes under drought and salt stress conditions. These results suggest that StMAPKK5 plays a significant role in regulating drought and salt tolerance in potato crop. Yeast two-hybrid (Y2H) screening identified four interacting proteins: StMYB19, StZFP8, StPUB-like, and StSKIP19. BiFC confirmed the authenticity of the interactions. These findings suggest that StMAPKK5 is crucial for potato growth, development, and response to adversity.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Secas , Saccharomyces cerevisiae , Cloreto de Sódio/farmacologia , Estresse Salino , Prolina , Superóxido Dismutase , Água
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542463

RESUMO

DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars ('Long10' (drought tolerant) and 'DXY' (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding.


Assuntos
Arabidopsis , Solanum tuberosum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistência à Seca , Filogenia , Melhoramento Vegetal , Arabidopsis/genética , Secas , DNA/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plants (Basel) ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475569

RESUMO

MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.

4.
Front Plant Sci ; 14: 1268448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780518

RESUMO

Ubiquitination is a specific protein degradation and reversible post-translational modification process that can be reversed by deubiquitinase (DUBs). DUBs can hydrolyze and release ubiquitin in the substrate protein so that the substrate can avoid degradation or change its activity, and it has an impact on plant growth and development, cell cycle, abiotic stress response, and other biological processes. Transcript sequences of potato varieties "DM1-3", "Atlantic" and "Cooperation-88" downloaded from Potato Genome Resources were used for genome-wide identification of the DUB gene family using Hidden Markov Models and verified in the NCBI CD-Search tool. The characteristics of DUB genes from different potato varieties were analyzed including subcellular localization, gene structural motifs, phylogenetic tree, and sequence homology. Polyethylene glycol 6000 (PEG6000) induced drought stress transcriptome analysis was performed on the "Atlantic", and differentially expressed genes were screened, with emphasis on the characterization of deubiquitinase. DUB genes have a complex gene structure, often with a large number of exons and alternative splicing. Their promoters contain abundant abiotic stress-responsive elements, such as 425 MYC, 325 ABRE, and 320 MYB. There are also a large number of orthologous genes in the DUBs of the three potato varieties, and these genes are often clustered in similar regions on the genome. We performed transcriptome sequencing of the potato under PEG-induced drought stress and analyzed it for the first time using the Atlantic as a reference genome. We identified a total of 6067 down-regulated differentially expressed genes (DEGs) and 4950 up-regulated DEGs under PEG-induced drought stress. We screened the expression of DUBs and observed that 120 DUBs were up-regulated where most of them functioned in the nucleus, and the interacting proteins of DUBs were also localized in the nucleus. We have comprehensively identified and analyzed potato DUBs, and the accurately aligned transcriptome data which will further deepen the understanding of DUBs involved in the regulation of osmotic stress.

5.
Biology (Basel) ; 12(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508331

RESUMO

Cotton Verticillium wilt, mainly caused by Verticillium dahliae, has a serious impact on the yield and quality of cotton fiber. Many microRNAs (miRNAs) have been identified to participate in plant resistance to V. dahliae infection, but the exploration of miRNA's function mechanism in plant defense is needed. Here, we demonstrate that the ghr-miR482b-GhRSG2 module mediates cotton plant resistance to V. dahliae infection. Based on the mRNA degradation data and GUS fusion experiments, ghr-miR482b directedly bonds to GhRSG2 mRNA to lead to its degradation. The knockdown and overexpression of ghr-miR482b through virus-induced gene silencing strategies enhanced (decreased by 0.39-fold in disease index compared with the control) and weakened (increased by 0.46-fold) the plant resistance to V. dahliae, respectively. In addition, silencing GhRSG2 significantly increased (increased by 0.93-fold in disease index) the plant sensitivity to V. dahliae compared with the control plants treated with empty vector. The expression levels of two SA-related disease genes, GhPR1 and GhPR2, significantly decreased in GhRSG2-silenced plants by 0.71 and 0.67 times, respectively, and in ghr-miR482b-overexpressed (OX) plants by 0.59 and 0.75 times, respectively, compared with the control, whereas the expression levels of GhPR1 and GhPR2 were significantly increased by 1.21 and 2.59 times, respectively, in ghr-miR482b knockdown (KD) plants. In sum, the ghr-miR482b-GhRSG2 module participates in the regulation of plant defense against V. dahliae by inducing the expression of PR1 and PR2 genes.

6.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175598

RESUMO

Soil salinity has become an increasingly serious problem worldwide, greatly limiting crop development and yield, and posing a major challenge to plant breeding. Basic leucine zipper (bZIP) transcription factors are the most widely distributed and conserved transcription factors and are the main regulators controlling various plant response processes against external stimuli. The bZIP protein contains two domains: a highly conserved, DNA-binding alkaline region, and a diverse leucine zipper, which is one of the largest transcription factor families in plants. Plant bZIP is involved in many biological processes, such as flower development, seed maturation, dormancy, and senescence, and plays an important role in abiotic stresses such as salt damage, drought, cold damage, osmotic stress, mechanical damage, and ABA signal response. In addition, bZIP is involved in the regulation of plant response to biological stresses such as insect pests and pathogen infection through salicylic acid, jasmonic acid, and ABA signal transduction pathways. This review summarizes and discusses the structural characteristics and functional characterization of the bZIP transcription factor group, the bZIP transcription factor complex and its molecular regulation mechanisms related to salt stress resistance, and the regulation of transcription factors in plant salt stress resistance. This review provides a theoretical basis and research ideas for further exploration of the salt stress-related functions of bZIP transcription factors. It also provides a theoretical basis for crop genetic improvement and green production in agriculture.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia
7.
Plants (Basel) ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176953

RESUMO

The autotetraploid potato (Solanum tuberosum L.) is an important crop in China, and it is widely cultivated from Northeast China to South China. Thousands of varieties are bred by breeding institutions or companies, and distinguishing the different varieties based on morphological characteristics is difficult. Using DNA fingerprints is an efficient method to identify varieties that plays an increasingly important role in germplasm identification and property rights protection. In this study, the genetic diversity and population structure of 135 autotetraploid potatoes were evaluated using specific-locus amplified fragment sequencing (SLAF-seq) methods. A total of 3,397,137 high-quality single-nucleotide polymorphisms (SNPs), which were distributed across 12 chromosomes, were obtained. Principal component analysis (PCA), neighbour-joining genetic trees, and model-based structure analysis showed that these autotetraploid potato subpopulations, classified by their SNPs, were not consistent with their geographical origins. On the basis of the obtained 3,397,137 SNPs, 160 perfect SNPs were selected, and 71 SNPs were successfully converted to penta-primer amplification refractory mutation (PARMS-SNP) markers. Additionally, 190 autotetraploid potato varieties were analysed using these 71 PARMS-SNP markers. The PCA results show that the accessions were not completely classified on the basis of their geographical origins. The SNP DNA fingerprints of the 190 autotetraploid potato varieties were also constructed. The SNP fingerprint results show that both synonyms and homonyms were present amongst the 190 autotetraploid potatoes. Above all, these novel SNP markers can lay a good foundation for the analysis of potato genetic diversity, DUS (distinctness, uniformity, and stability) testing, and plant variety protection.

8.
Front Plant Sci ; 14: 932923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909407

RESUMO

Crop plants are vulnerable to various biotic and abiotic stresses, whereas plants tend to retain their physiological mechanisms by evolving cellular regulation. To mitigate the adverse effects of abiotic stresses, many defense mechanisms are induced in plants. One of these mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signaling pathway used in the transduction of extracellular stimuli into intercellular responses. This stress signaling pathway is activated by a series of responses involving MAPKKKs→MAPKKs→MAPKs, consisting of interacting proteins, and their functions depend on the collaboration and activation of one another by phosphorylation. These proteins are key regulators of MAPK in various crop plants under abiotic stress conditions and also related to hormonal responses. It is revealed that in response to stress signaling, MAPKs are characterized as multigenic families and elaborate the specific stimuli transformation as well as the antioxidant regulation system. This pathway is directed by the framework of proteins and stopping domains confer the related associates with unique structure and functions. Early studies of plant MAPKs focused on their functions in model plants. Based on the results of whole-genome sequencing, many MAPKs have been identified in plants, such as Arbodiposis, tomato, potato, alfalfa, poplar, rice, wheat, maize, and apple. In this review, we summarized the recent work on MAPK response to abiotic stress and the classification of MAPK cascade in crop plants. Moreover, we highlighted the modern research methodologies such as transcriptomics, proteomics, CRISPR/Cas technology, and epigenetic studies, which proposed, identified, and characterized the novel genes associated with MAPKs and their role in plants under abiotic stress conditions. In-silico-based identification of novel MAPK genes also facilitates future research on MAPK cascade identification and function in crop plants under various stress conditions.

9.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768743

RESUMO

Ubiquitin-conjugating enzymes (E2s/UBC) are components of the ubiquitin proteasome system (UPS), and the ubiquitin-conjugating enzyme variant (UEV) is one of E2s (ubiquitin-conjugating enzymes, UBC) subfamily. The UEVs and UBC13 play an auxiliary role in mediating Lys63-linked polyUb chain assembly, which is correlated with target protein non-proteolytic functions, such as DNA repair or response to stress. However, the collaborative mechanism of StUBC13 (homologue of AtUBC13) and StUEVs (the UEVs in potato) involved in potato are not fully understood understood. Here, we identified two StUBC13 and seven StUEVs from potato genome. We analyzed protein motif and conserved domain, gene structure, phylogenetic features, cis-acting elements of StUBC13 and StUEVs. Subsequently, we screened StUBC13 partners protein and verified interaction between StUBC13 and StUEVs using yeast two-hybrid, split luciferase complementation (SLC) and bimolecular fluorescence complementation (BiFC) approach. The expression profile and qRT-PCR analysis suggested that StUBC13 and StUEVs gene exhibited a tissue-specific expression and were induced by different stress. Overall, this investigative study provides a comprehensive reference and view for further functional research on StUBC13 and StUEV1s in potato.


Assuntos
Solanum tuberosum , Enzimas de Conjugação de Ubiquitina , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Sequência de Aminoácidos , Saccharomyces cerevisiae/metabolismo
10.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768844

RESUMO

One of the main impacts of drought stress on plants is an excessive buildup of reactive oxygen species (ROS). A large number of ·OH, highly toxic to cells, will be produced if too much ROS is not quickly cleared. At the heart of antioxidant enzymes is superoxide dismutase (SOD), which is the first antioxidant enzyme to function in the active oxygen scavenging system. To shield cells from oxidative injury, SOD dismutation superoxide anion free radicals generate hydrogen peroxide and molecule oxygen. Cu/Zn SOD is a kind of SOD antioxidant enzyme that is mostly found in higher plants' cytoplasm and chloroplasts. Other studies have demonstrated the significance of the miR398s family of miRNAs in the response of plants to environmental stress. The cleavage location of potato stu-miR398b-3p on Cu/Zn SOD mRNA was verified using RLM-5'RACE. Using the potato variety 'Desiree', the stu-miR398b-3p overexpression mutant was created, and transgenic lines were raised. SOD activity in transgenic lines was discovered to be decreased during drought stress, although other antioxidant enzyme activities were mostly unaltered. Transgenic plants will wilt more quickly than wild-type plants without irrigation. Additionally, this demonstrates that the response of Cu/Zn SOD to drought stress is adversely regulated by potato stu-miR398b-3p.


Assuntos
Solanum tuberosum , Espécies Reativas de Oxigênio , Superóxido Dismutase-1/genética , Solanum tuberosum/genética , Antioxidantes , Resistência à Seca , Superóxido Dismutase/genética , Superóxidos , Zinco
11.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835025

RESUMO

Sensor-responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) are plant-specific Ca2+ receptors, and the CBL-CIPK module is widely involved in plant growth and development and a large number of abiotic stress response signaling pathways. In this study, the potato cv. "Atlantic" was subjected to a water deficiency treatment and the expression of StCIPK18 gene was detected by qRT-PCR. The subcellular localization of StCIPK18 protein was observed by a confocal laser scanning microscope. The StCIPK18 interacting protein was identified and verified by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). StCIPK18 overexpression and StCIPK18 knockout plants were constructed. The phenotypic changes under drought stress were indicated by water loss rate, relative water content, MDA and proline contents, and CAT, SOD and POD activities. The results showed that StCIPK18 expression was upregulated under drought stress. StCIPK18 is localized in the cell membrane and cytoplasm. Y2H shows the interaction between StCIPK18 and StCBL1, StCBL4, StCBL6 and StCBL8. BiFC further verifies the reliability of the interaction between StCIPK18 and StCBL4. Under drought stress, StCIPK18 overexpression decreased the water loss rate and MDA, and increased RWC, proline contents and CAT, SOD and POD activities; however, StCIPK18 knockout showed opposite results, compared with the wild type, in response to drought stress. The results can provide information for the molecular mechanism of the StCIPK18 regulating potato response to drought stress.


Assuntos
Arabidopsis , Solanum tuberosum , Solanum tuberosum/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Arabidopsis/genética , Reprodutibilidade dos Testes , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases/metabolismo , Secas , Água/metabolismo , Superóxido Dismutase/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
12.
Front Plant Sci ; 14: 1334620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259924

RESUMO

Abiotic/biotic stresses pose a major threat to agriculture and food security by impacting plant growth, productivity and quality. The discovery of extensive transcription of large RNA transcripts that do not code for proteins, termed long non-coding RNAs (lncRNAs) with sizes larger than 200 nucleotides in length, provides an important new perspective on the centrality of RNA in gene regulation. In plants, lncRNAs are widespread and fulfill multiple biological functions in stress response. In this paper, the research advances on the biological function of lncRNA in plant stress response were summarized, like as Natural Antisense Transcripts (NATs), Competing Endogenous RNAs (ceRNAs) and Chromatin Modification etc. And in plants, lncRNAs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid (ABA), jasmonate (JA), salicylic acid (SA) and redox signaling in response to many abiotic/biotic stresses. Moreover, conserved sequence motifs and structural motifs enriched within stress-responsive lncRNAs may also be responsible for the stress-responsive functions of lncRNAs, it will provide a new focus and strategy for lncRNA research. Taken together, we highlight the unique role of lncRNAs in integrating plant response to adverse environmental conditions with different aspects of plant growth and development. We envisage that an improved understanding of the mechanisms by which lncRNAs regulate plant stress response may further promote the development of unconventional approaches for breeding stress-resistant crops.

13.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499135

RESUMO

Stomata are specialized portals in plant leaves to modulate water loss from plants to the atmosphere by control of the transpiration, thereby determining the water-use efficiency and drought resistance of plants. Despite that the stomata developmental progression is well-understood at the molecular level, the experimental evidence that miRNA regulates stomata development is still lacking, and the underlying mechanism remains elusive. This study demonstrates the involvement of stu-miR827 in regulating the drought tolerance of potato due to its control over the leaf stomatal density. The expression analysis showed that stu-miR827 was obviously repressed by drought stresses and then rapidly increased after rewatering. Suppressing the expression of stu-miR827 transgenic potato lines showed an increase in stomatal density, correlating with a weaker drought resistance compared with wildtype potato lines. In addition, StWRKY48 was identified as the target gene of stu-miR827, and the expression of StWRKY48 was obviously induced by drought stresses and was greatly upregulated in stu-miR827 knockdown transgenic potato lines, suggesting its involvement in the drought stress response. Importantly, the expression of genes associated with stomata development, such as SDD (stomatal density and distribution) and TMM (too many mouths), was seriously suppressed in transgenic lines. Altogether, these observations demonstrated that suppression of stu-miR827 might lead to overexpression of StWRKY48, which may contribute to negatively regulating the drought adaptation of potato by increasing the stomatal density. The results may facilitate functional studies of miRNAs in the process of drought tolerance in plants.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estômatos de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Secas , Folhas de Planta/metabolismo , Água/metabolismo
14.
Antioxidants (Basel) ; 11(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36290624

RESUMO

Superoxide dismutase (SOD) actively participates in the wound stress of plants. However, whether StMSD mediates the generation of H2O2 and the deposition of suberin polyphenolic and lignin at potato tuber wounds is elusive. In this study, we developed the StMSD interference expression of potato plants and tubers by Agrobacterium tumefaciens-mediated transformation. The StSOD expression showed a marked downregulation in StMSD-interference tubers, especially StCSD2 and StCSD3. The content of O2•- exhibited a noticeable increase together with the inhibition in H2O2 accumulation. Moreover, the gene expression levels of StPAL (phenylalanine ammonia-lyase) and StC4H (cinnamate-4-hydroxylase) were downregulated in StMSD-interference tubers, and less suberin polyphenolic and lignin depositions at the wounds were observed. Taken together, the interference expression of StMSD can result in less suberin polyphenolic and lignin deposition by inhibiting the disproportionation of O2•- to H2O2 and restraining phenylpropanoid metabolism in tubers.

15.
Front Plant Sci ; 13: 1009552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186016

RESUMO

The major stages of the potato life cycle are tuber dormancy and sprouting, however, there is still known very little of the mechanisms that control these processes. TCP (Theosinte branch I, Cycloidea, proliferationcell factors 1 and 2) transcription factors play a key role in plant growth and dormancy related developmental processes. Previous researches demonstrated that TCP transcription factor StTCP15 had a function in the promotion of dormancy. To elucidate the function of StTCP15 gene, it was cloned from potato cultivar "Desiree," which encodes a polypeptide consisting of 414 amino acids and is mainly found in the nucleus. The potato tubers of StTCP15 overexpression lines sprouted in advance, while the potato tubers of StTCP15 down-regulated expression lines showed delayed sprouting. In addition, it was also found that overexpression lines of StTCP15 extremely significantly reduced the ratio of abscisic acid (ABA)/gibberellic acid (GA3), while the superoxide dismutase activity decreased, and the activity of peroxidase and catalase increased compared with the wild type. The opposite result was found in the down-regulated expression lines of StTCP15 gene. Three interacting proteins, StSnRK1, StF-Box and StGID1, were screened by Yeast two-hybrid, and verified by Bimolecular Fluorescence Complementation and Split-luciferase, indicating that StTCP15 could affect ABA and GA3 signaling pathways to regulate potato tuber dormancy and sprouting. Together, these results demonstrated that StTCP15 regulated potato tuber dormancy and sprouting by affecting the dynamic balance between ABA and GA3. The result could provide some information on the molecular mechanism of StTCP15 regulating potato tuber dormancy and sprouting.

16.
Front Plant Sci ; 13: 919243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092392

RESUMO

MicroRNAs (miRNAs) are a class of non-coding endogenous small RNAs (long 20-24 nucleotides) that negatively regulate eukaryotes gene expression at post-transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of miRNA target genes has been carried out, and a growing body of research has demonstrated that miRNAs act on target genes and are involved in various biological functions of plants. It has an important influence on plant growth and development, morphogenesis, and stress response. Recent case studies indicate that miRNA-mediated regulation pattern may improve agronomic properties and confer abiotic stress resistance of plants, so as to ensure sustainable agricultural production. In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as well as plant-growing development. In particular, this review highlights the diverse functions of miRNAs on achieving the desirable agronomic traits in important crops. Herein, the main research strategies of miRNAs involved in abiotic stress resistance and crop traits improvement were summarized. Furthermore, the miRNA-related challenges and future perspectives of plants have been discussed. miRNA-based research lays the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a potential form of crop improvement and stress resistance breeding.

17.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955930

RESUMO

Calcium-dependent protein kinases (CDPK) are implicated in signaling transduction in eukaryotic organisms. It is largely unknown whether StCDPK28 plays a role in the response to water deficiency and osmotic stress in potato plants (Solanum tuberosum L.). Potato cv. Zihuabai was cultivated under natural, moderate, and severe water deficiency conditions; to induce osmotic stress, potato plants were treated with 10% or 20% PEG. StCDPK28-overexpression and StCDPK28-knockdown plants were constructed. StCDPKs were evaluated by qRT-PCR. The subcellular location of the StCDPK28 protein was observed with confocal scanning laser microscopy. Phenotypic changes were indicated by photosynthetic activity, the contents of H2O2, MDA and proline, and the activities of CAT, SOD and POD. Results showed water deficiency and osmotic stress altered StCDPK expression patterns. StCDPK28 exhibited a membrane, cytosolic and nuclear localization. Water deficiency and osmotic stress induced StCDPK28 upregulation. Photosynthetic activity was enhanced by StCDPK28 overexpression, while decreased by StCDPK2 knockdown under water deficiency and osmotic stress. StCDPK28 overexpression decreased H2O2 and MDA, and increased proline, while StCDPK28 knockdown showed reverse results, compared with the wild type, in response to water deficiency and osmotic stress. StCDPK28 overexpression increased the activities of CAT, SOD and POD, while StCDPK28-knockdown plants indicated the reverse trend under water deficiency and osmotic stress conditions. Regulation of StCDPK28 expression could be a promising approach to improve the tolerance ability of potato plants in response to drought or high salt media.


Assuntos
Solanum tuberosum , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Pressão Osmótica , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Solanum tuberosum/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Água/metabolismo
18.
Front Plant Sci ; 13: 844201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668792

RESUMO

Coordinated transcriptional regulation of stress-responsive genes orchestrated by a complex network of transcription factors (TFs) and the reprogramming of metabolism ensure a plant's continued growth and survival under adverse environmental conditions (e.g., abiotic stress). DNA-binding with one finger (Dof) proteins, a group of plant-specific TF, were identified as one of several key components of the transcriptional regulatory network involved in abiotic stress responses. In many plant species, Dofs are often activated in response to a wide range of adverse environmental conditions. Dofs play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Moreover, Dofs act as a key regulatory hub of several phytohormone pathways, integrating abscisic acid, jasmonate, SA and redox signaling in response to many abiotic stresses. Taken together, we highlight a unique role of Dofs in hormone and stress signaling that integrates plant response to adverse environmental conditions with different aspects of plant growth and development.

19.
Plant Physiol Biochem ; 185: 279-289, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724622

RESUMO

Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.


Assuntos
Solanum tuberosum , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Cicatrização/genética
20.
Mol Biol Rep ; 49(6): 4683-4697, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35366758

RESUMO

BACKGROUND: The phosphatidylethanolamine-binding protein (PEBP) gene family is involved in regulating many plant traits. Genome-wide identification of PEPB members and knowledge of their responses to heat stress may assist genetic improvement of potato (Solanum tuberosum). METHODS AND RESULTS: We identified PEBP gene family members from both the recently-updated, long-reads-based reference genome (DM v6.1) and the previous short-reads-based annotation (PGSC DM v3.4) of the potato reference genome and characterized their heat-induced gene expression using RT-PCR and RNA-Seq. Fifteen PEBP family genes were identified from DM v6.1 and named as StPEBP1 to StPEBP15 based on their locations on 6 chromosomes and were classified into FT, TFL, MFT, and PEBP-like subfamilies. Most of the StPEBP genes were found to have conserved motifs 1 to 5. Tandem or segmental duplications were found between StPEBP genes in seven pairs. Heat stress induced opposite expression patterns of certain FT and TFL members but involving different members in leaves, roots and tubers. CONCLUSION: The long-reads-based genome assembly and annotation provides a better genomic resource for identification of PEBP family genes. Heat stress tends to decrease FT gene activities but increases TFL gene activities, but this opposite expression involves different FT/TFL pairs in leaves, roots, and tubers. This tissue-specific expression pattern of PEBP members may partly explain why different potato organs differ in their sensitivities to heat stress. Our study provides candidate PEBP family genes and relevant information for genetic improvement of heat tolerance in potato and may help understand heat-induced responses in other plants.


Assuntos
Solanum tuberosum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Resposta ao Choque Térmico/genética , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA